तपाइको भाई-बहिनीहरुको धेरै लागि महत्त्वपूर्ण गणित सूत्रहरूः
•••••••••••••••••••••••••••••••••••••••••••••
➤ (α+в+c)²= α²+в²+c²+2(αв+вc+cα)
➤ (α+в)²= α²+2αв+в²
➤ (α+в)²= (α-в)²+4αв
➤ (α-в)²= α²-2αв+в²
➤ (α-в)²= (α+в)²-4αв
➤ α² + в²= (α+в)² - 2αв
➤ α² + в²= (α-в)² + 2αв
➤ α²-в² =(α + в)(α - в)
➤ 2(α²+в²) = (α+в)² + (α-в)²
➤ (α+в)² - (α-в)² = 4αв
➤ αв ={(α+в)/2}²-{(α-в)/2}²
➤ (α+в+c)²= α²+в²+c²+ 2(αв +вc+cα)
➤ (α + в)³ = α³+3α²в+3αв²+в³
➤ (α + в)³ = α³ + в³ + 3αв(α + в)
➤ (α-в)³= α³ - 3α²в + 3αв² - в³
➤ α³ + в³ = (α + в) (α² -αв + в²)
➤ α³ + в³ = (α+ в)³ -3αв(α+ в)
➤ α³ - в³ = (α -в) (α² + αв + в²)
➤ α³ - в³ = (α-в)³ + 3αв(α-в)
•••
➤ ѕιη0° =0
➤ ѕιη30° = 1/2
➤ ѕιη45° = 1/√2
➤ ѕιη60° = √3/2
➤ ѕιη90° = 1
cos is opposite of sin
•••
➤ тαη0° = 0
➤ тαη30° = 1/√3
➤ тαη45° = 1
➤ тαη60° = √3
➤ тαη90° = ∞
¢σт ιѕ σρρσѕιтє σƒ тαη
•••
➤ ѕє¢0° = 1
➤ ѕє¢30° = 2/√3
➤ ѕє¢45° = √2
➤ ѕє¢60° = 2
➤ ѕє¢90° = ∞
¢σѕє¢ ιѕ σρρσѕιтє σƒ ѕє¢
•••
➤ 2ѕιηα ¢σѕв=ѕιη(α+в)+ѕιη(α-в)
➤ 2¢σѕα ѕιηв=ѕιη(α+в)-ѕιη(α-в)
➤ 2¢σѕα ¢σѕв=¢σѕ(α+в)+¢σѕ(α-в)
➤ 2ѕιηα ѕιηв=¢σѕ(α-в)-¢σѕ(α+в)
➤ ѕιη(α+в)=ѕιηα ¢σѕв+ ¢σѕα ѕιηв
➤ ¢σѕ(α+в)=¢σѕα ¢σѕв - ѕιηα ѕιηв
➤ ѕιη(α-в)=ѕιηα ¢σѕв-¢σѕα ѕιηв
➤ ¢σѕ(α-в)=¢σѕα ¢σѕв+ѕιηα ѕιηв
➤ тαη(α+в)= (тαηα + тαηв)/ (1−тαηαтαηв)
➤ тαη(α−в)= (тαηα − тαηв) / (1+ тαηα тαηв)
➤ ¢σт(α+в)= (¢σтα¢σтв −1) / (¢σтα + ¢σтв)
➤ ¢σт(α−в)= (¢σтα¢σтв + 1) / (¢σтв– ¢σтα)
➤ ѕιη(α+в)=ѕιηα ¢σѕв+ ¢σѕα ѕιηв
➤ ¢σѕ(α+в)=¢σѕα ¢σѕв +ѕιηα ѕιηв
➤ ѕιη(α-в)=ѕιηα ¢σѕв - ¢σѕα ѕιηв
➤ ¢σѕ(α-в)=¢σѕα ¢σѕв + ѕιηα ѕιηв
➤ тαη(α+в)= (тαηα + тαηв)/ (1−тαηαтαηв)
➤ тαη(α−в)= (тαηα − тαηв) / (1+ тαηα тαηв)
➤ ¢σт(α+в)= (¢σтα ¢σтв −1) / (¢σтα + ¢σтв)
➤ ¢σт(α−в)= (¢σтα¢σтв + 1) / (¢σтв– ¢σтα)
•••
➤ α/ѕιηα = в/ѕιηв = ¢/ѕιη¢ = 2я
➤ α = в coѕc + c coѕв
➤ в = α coѕc + c coѕα
➤ c = α coѕв + в coѕα
➤ coѕα = (в² + c²− α²) / 2вc
➤ coѕв = (c² + α²− в²) / 2cα
➤ coѕc = (α² + в²− c²) / 2cα
➤ Δ = αвc/4я
➤ ѕιηΘ = 0 тнєη,Θ = ηΠ
➤ ѕιηΘ = 1 тнєη,Θ = (4η + 1)Π/2
➤ ѕιηΘ =−1 тнєη,Θ = (4η− 1)Π/2
➤ ѕιηΘ = ѕιηα тнєη,Θ = ηΠ (−1)^ηα
•••
➤ ѕιη2α = 2ѕιηα ¢σѕα
➤ ¢σѕ2α = ¢σѕ²α − ѕιη²α
➤ ¢σѕ2α = 2¢σѕ²α − 1
➤ ¢σѕ2α = 1 − ѕιη²α
➤ 2ѕιη²α = 1 − ¢σѕ2α
➤ 1 + ѕιη2α = (ѕιηα + ¢σѕα)²
➤ 1 − ѕιη2α = (ѕιηα − ¢σѕα)²
➤ тαη2α = 2тαηα / (1 − тαη²α)
➤ ѕιη2α = 2тαηα / (1 + тαη²α)
➤ ¢σѕ2α = (1 − тαη²α) / (1 + тαη²α)
➤ 4ѕιη³α = 3ѕιηα − ѕιη3α
➤ 4¢σѕ³α = 3¢σѕα + ¢σѕ3α
•••
➤ ѕιη²Θ+¢σѕ²Θ=1
➤ ѕє¢²Θ-тαη²Θ=1
➤ ¢σѕє¢²Θ-¢σт²Θ=1
➤ ѕιηΘ=1/¢σѕє¢Θ
➤ ¢σѕє¢Θ=1/ѕιηΘ
➤ ¢σѕΘ=1/ѕє¢Θ
➤ ѕє¢Θ=1/¢σѕΘ
➤ тαηΘ=1/¢σтΘ
➤ ¢σтΘ=1/тαηΘ
➤ тαηΘ=ѕιηΘ/¢σѕΘ
•••
"महत्वपूर्ण".. 9th,10th,11th,12th, गणित विषयको सम्पूर्ण फर्मूलाहरु त्यसैले कृपया अभिभावकहरु share गर्नु होस् !!
●•●•●•●•●•●•●•●•●•●•●•●•●•●•●•●
Byः #U_T_R
•••••••••••••••••••••••••••••••••••••••••••••
➤ (α+в+c)²= α²+в²+c²+2(αв+вc+cα)
➤ (α+в)²= α²+2αв+в²
➤ (α+в)²= (α-в)²+4αв
➤ (α-в)²= α²-2αв+в²
➤ (α-в)²= (α+в)²-4αв
➤ α² + в²= (α+в)² - 2αв
➤ α² + в²= (α-в)² + 2αв
➤ α²-в² =(α + в)(α - в)
➤ 2(α²+в²) = (α+в)² + (α-в)²
➤ (α+в)² - (α-в)² = 4αв
➤ αв ={(α+в)/2}²-{(α-в)/2}²
➤ (α+в+c)²= α²+в²+c²+ 2(αв +вc+cα)
➤ (α + в)³ = α³+3α²в+3αв²+в³
➤ (α + в)³ = α³ + в³ + 3αв(α + в)
➤ (α-в)³= α³ - 3α²в + 3αв² - в³
➤ α³ + в³ = (α + в) (α² -αв + в²)
➤ α³ + в³ = (α+ в)³ -3αв(α+ в)
➤ α³ - в³ = (α -в) (α² + αв + в²)
➤ α³ - в³ = (α-в)³ + 3αв(α-в)
•••
➤ ѕιη0° =0
➤ ѕιη30° = 1/2
➤ ѕιη45° = 1/√2
➤ ѕιη60° = √3/2
➤ ѕιη90° = 1
cos is opposite of sin
•••
➤ тαη0° = 0
➤ тαη30° = 1/√3
➤ тαη45° = 1
➤ тαη60° = √3
➤ тαη90° = ∞
¢σт ιѕ σρρσѕιтє σƒ тαη
•••
➤ ѕє¢0° = 1
➤ ѕє¢30° = 2/√3
➤ ѕє¢45° = √2
➤ ѕє¢60° = 2
➤ ѕє¢90° = ∞
¢σѕє¢ ιѕ σρρσѕιтє σƒ ѕє¢
•••
➤ 2ѕιηα ¢σѕв=ѕιη(α+в)+ѕιη(α-в)
➤ 2¢σѕα ѕιηв=ѕιη(α+в)-ѕιη(α-в)
➤ 2¢σѕα ¢σѕв=¢σѕ(α+в)+¢σѕ(α-в)
➤ 2ѕιηα ѕιηв=¢σѕ(α-в)-¢σѕ(α+в)
➤ ѕιη(α+в)=ѕιηα ¢σѕв+ ¢σѕα ѕιηв
➤ ¢σѕ(α+в)=¢σѕα ¢σѕв - ѕιηα ѕιηв
➤ ѕιη(α-в)=ѕιηα ¢σѕв-¢σѕα ѕιηв
➤ ¢σѕ(α-в)=¢σѕα ¢σѕв+ѕιηα ѕιηв
➤ тαη(α+в)= (тαηα + тαηв)/ (1−тαηαтαηв)
➤ тαη(α−в)= (тαηα − тαηв) / (1+ тαηα тαηв)
➤ ¢σт(α+в)= (¢σтα¢σтв −1) / (¢σтα + ¢σтв)
➤ ¢σт(α−в)= (¢σтα¢σтв + 1) / (¢σтв– ¢σтα)
➤ ѕιη(α+в)=ѕιηα ¢σѕв+ ¢σѕα ѕιηв
➤ ¢σѕ(α+в)=¢σѕα ¢σѕв +ѕιηα ѕιηв
➤ ѕιη(α-в)=ѕιηα ¢σѕв - ¢σѕα ѕιηв
➤ ¢σѕ(α-в)=¢σѕα ¢σѕв + ѕιηα ѕιηв
➤ тαη(α+в)= (тαηα + тαηв)/ (1−тαηαтαηв)
➤ тαη(α−в)= (тαηα − тαηв) / (1+ тαηα тαηв)
➤ ¢σт(α+в)= (¢σтα ¢σтв −1) / (¢σтα + ¢σтв)
➤ ¢σт(α−в)= (¢σтα¢σтв + 1) / (¢σтв– ¢σтα)
•••
➤ α/ѕιηα = в/ѕιηв = ¢/ѕιη¢ = 2я
➤ α = в coѕc + c coѕв
➤ в = α coѕc + c coѕα
➤ c = α coѕв + в coѕα
➤ coѕα = (в² + c²− α²) / 2вc
➤ coѕв = (c² + α²− в²) / 2cα
➤ coѕc = (α² + в²− c²) / 2cα
➤ Δ = αвc/4я
➤ ѕιηΘ = 0 тнєη,Θ = ηΠ
➤ ѕιηΘ = 1 тнєη,Θ = (4η + 1)Π/2
➤ ѕιηΘ =−1 тнєη,Θ = (4η− 1)Π/2
➤ ѕιηΘ = ѕιηα тнєη,Θ = ηΠ (−1)^ηα
•••
➤ ѕιη2α = 2ѕιηα ¢σѕα
➤ ¢σѕ2α = ¢σѕ²α − ѕιη²α
➤ ¢σѕ2α = 2¢σѕ²α − 1
➤ ¢σѕ2α = 1 − ѕιη²α
➤ 2ѕιη²α = 1 − ¢σѕ2α
➤ 1 + ѕιη2α = (ѕιηα + ¢σѕα)²
➤ 1 − ѕιη2α = (ѕιηα − ¢σѕα)²
➤ тαη2α = 2тαηα / (1 − тαη²α)
➤ ѕιη2α = 2тαηα / (1 + тαη²α)
➤ ¢σѕ2α = (1 − тαη²α) / (1 + тαη²α)
➤ 4ѕιη³α = 3ѕιηα − ѕιη3α
➤ 4¢σѕ³α = 3¢σѕα + ¢σѕ3α
•••
➤ ѕιη²Θ+¢σѕ²Θ=1
➤ ѕє¢²Θ-тαη²Θ=1
➤ ¢σѕє¢²Θ-¢σт²Θ=1
➤ ѕιηΘ=1/¢σѕє¢Θ
➤ ¢σѕє¢Θ=1/ѕιηΘ
➤ ¢σѕΘ=1/ѕє¢Θ
➤ ѕє¢Θ=1/¢σѕΘ
➤ тαηΘ=1/¢σтΘ
➤ ¢σтΘ=1/тαηΘ
➤ тαηΘ=ѕιηΘ/¢σѕΘ
•••
"महत्वपूर्ण".. 9th,10th,11th,12th, गणित विषयको सम्पूर्ण फर्मूलाहरु त्यसैले कृपया अभिभावकहरु share गर्नु होस् !!
●•●•●•●•●•●•●•●•●•●•●•●•●•●•●•●
Byः #U_T_R
Comments
Post a Comment